565 research outputs found

    Resolving the relationships of Paleocene placental mammals

    Get PDF
    © 2015 Cambridge Philosophical Society. The 'Age of Mammals' began in the Paleocene epoch, the 10million year interval immediately following the Cretaceous-Palaeogene mass extinction. The apparently rapid shift in mammalian ecomorphs from small, largely insectivorous forms to many small-to-large-bodied, diverse taxa has driven a hypothesis that the end-Cretaceous heralded an adaptive radiation in placental mammal evolution. However, the affinities of most Paleocene mammals have remained unresolved, despite significant advances in understanding the relationships of the extant orders, hindering efforts to reconstruct robustly the origin and early evolution of placental mammals. Here we present the largest cladistic analysis of Paleocene placentals to date, from a data matrix including 177 taxa (130 of which are Palaeogene) and 680 morphological characters. We improve the resolution of the relationships of several enigmatic Paleocene clades, including families of 'condylarths'. Protungulatum is resolved as a stem eutherian, meaning that no crown-placental mammal unambiguously pre-dates the Cretaceous-Palaeogene boundary. Our results support an Atlantogenata-Boreoeutheria split at the root of crown Placentalia, the presence of phenacodontids as closest relatives of Perissodactyla, the validity of Euungulata, and the placement of Arctocyonidae close to Carnivora. Periptychidae and Pantodonta are resolved as sister taxa, Leptictida and Cimolestidae are found to be stem eutherians, and Hyopsodontidae is highly polyphyletic. The inclusion of Paleocene taxa in a placental phylogeny alters interpretations of relationships and key events in mammalian evolutionary history. Paleocene mammals are an essential source of data for understanding fully the biotic dynamics associated with the end-Cretaceous mass extinction. The relationships presented here mark a critical first step towards accurate reconstruction of this important interval in the evolution of the modern fauna. Biological Review

    Vitamin D Status Relative to Diet, Lifestyle, Injury, and Illness in College Athletes

    Get PDF
    Vitamin D deficiency is endemic in the general population; however, there is much to be learned about the vitamin D status of athletes. Purpose: The purposes of this study were to assess the prevalence of vitamin D insufficiency in collegiate athletes and to determine whether 25(OH)D concentrations are related to vitamin D intake, sun exposure, body composition, and risk for illness or athletic injury. Methods: 25(OH) vitamin D concentrations were measured in 41 athletes (18 men/23 women, 12 indoor/29 outdoor athletes) throughout the academic year. Dietary intake and lifestyle habits were assessed via questionnaire, bone density was measured by dual energy x-ray absorptiometry, and injury and illness were documented as part of routine care. Results: The 25(OH)D concentrations changed across time (P = 0.001) and averaged 49.0 T 16.6, 30.5 T 9.4, and 41.9 T 14.6 ngImLj1 (mean T SD) in the fall, winter, and spring, respectively, and were higher in outdoor versus indoor athletes in the fall (P G 0.05). Using 40 ngImLj1 as the cutoff for optimal status, 75.6%, 15.2%, and 36.0% of athletes had optimal status in the fall, winter, and spring, respectively. 25(OH)D concentrations were significantly (P G 0.05) correlated with multivitamin intake in the winter (r = 0.39) and tanning bed use in the spring (r = 0.48); however, status was otherwise not related to intake, lifestyle factors, or body composition. 25(OH)D concentrations in the spring (r = j0.40, P = 0.048) was correlated with frequency of illness. Conclusions: Our results suggest that collegiate athletes can maintain sufficient status during the fall and spring but would benefit from supplementation during the winter to prevent seasonal decreases in 25(OH)D concentrations. Results further suggest that insufficient vitamin D status may increase risk for frequent illness. Future research is needed to identify whether vitamin D status influences injury risk during athletic training or competition

    Rb-Sr dating of sphalerites from Mississippi Valley-type (MVT) ore deposits

    Full text link
    Mississippi Valley-type (MVT) ore deposits are epigenetic carbonate-hosted Pb-Zn deposits that contain galena, sphalerite, fluorite, barite, dolomite, calcite, and quartz. Although they are thought to form from basinal brines, their exact origins are still unclear, partly because of the scarcity of reliable geochronological data. Rb-Sr dating of sphalerites has recently been shown to be a promising technique for the direct dating of ore minerals in MVT deposits. This paper reports the results of a reconnaissance study of sphalerites, their fluid inclusions, and associated minerals from MVT deposits of North America. Sphalerites from Immel mine, Mascot-Jefferson City district, east Tennessee, define a Rb-Sr age of 347 +/- 20 Ma consistent with a Rb-Sr age of 377 +/- 29 Ma for sphalerites from Coy mine in the same district, but inconsistent with models that ascribe their genesis to the effects of the late Paleozoic Alleghenian orogeny. Rb-Sr isotopic analyses of K-feldspar from Immel mine preclude the possibility that the Rb-Sr data reflect feldspar inclusions. Sphalerites from the main ore zone of Daniel's Harbour mine, New foundland, do not form a linear isochron and open behavior of the Rb-Sr system is suspected. Sphalerites from the Pine Point district, Northwest Territories, Canada, define a Rb-Sr age of 361 +/- 13 Ma, indicating that the mineralization took place shortly after the deposition of the middle Devonian host carbonate rocks. These results are not compatible with mineralization models based on regional fluid migration related to early Tertiary Cordilleran deformation. Sphalerites from northern Arkansas have very low Rb and Sr concentrations (less than 0.1 ppm). The Rb-Sr data do not form isochrons and the sphalerites have higher 87Sr/86Sr ratios than expected, given their Rb/Sr ratios and reasonable constraints on their ages. The sphalerites are suspected to contain clay inclusions; and it is likely that the Sr isotopic compositions of these sphalerites, which have very low Sr concentrations, were affected by small amounts of inherited inclusions. Except for sphalerite from northern Arkansas, SEM studies and isotope dilution trace element measurements have so far failed to identify any suitable phases other than sphalerite that might be a host for the Sr.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/31084/1/0000761.pd

    Developmental origin underlies evolutionary rate variation across the placental skull

    Get PDF
    The placental skull has evolved into myriad forms, from longirostrine whales to globular primates, and with a diverse array of appendages from antlers to tusks. This disparity has recently been studied from the perspective of the whole skull, but the skull is composed of numerous elements that have distinct developmental origins and varied functions. Here, we assess the evolution of the skull's major skeletal elements, decomposed into 17 individual regions. Using a high-dimensional morphometric approach for a dataset of 322 living and extinct eutherians (placental mammals and their stem relatives), we quantify patterns of variation and estimate phylogenetic, allometric and ecological signal across the skull. We further compare rates of evolution across ecological categories and ordinal-level clades and reconstruct rates of evolution along lineages and through time to assess whether developmental origin or function discriminate the evolutionary trajectories of individual cranial elements. Our results demonstrate distinct macroevolutionary patterns across cranial elements that reflect the ecological adaptations of major clades. Elements derived from neural crest show the fastest rates of evolution, but ecological signal is equally pronounced in bones derived from neural crest and paraxial mesoderm, suggesting that developmental origin may influence evolutionary tempo, but not capacity for specialisation. This article is part of the theme issue 'The mammalian skull: development, structure and function'

    The attitudes of people with sarcoma and their family towards genomics and incidental information arising from genetic research

    Get PDF
    Purpose: The study aimed to examine attitudes of individuals diagnosed with sarcoma and their family members towards genetics, genomic research and incidental information arising as a result of participating in genetic research. Methods: A questionnaire was administered to 1200 individuals from the International Sarcoma Kindred Study (ISKS). Respondents were divided into three groups: individuals affected with sarcoma (probands), their spouses and family members. Results: Approximately half of all research participants felt positively towards new discoveries in human genetics. Overall, more were positive in their attitudes towards genetic testing for inherited conditions (60%) but family members were less so. Older participants reported more highly positive attitudes more often than younger participants. Males were less likely to feel positive about new genetic discoveries and more likely to believe they could modify genetic risk by altering lifestyle factors. Almost all ISKS participants believed participants would like to be given ancillary information arising as a result of participating in genetic research. Conclusions: The only difference between the study groups was the decreased likelihood of family members being highly positive about genetic testing. This may be important if predictive testing for sarcoma becomes available. Generally ISKS research participants supported the notion of returning incidental genetic information to research participants.Mary-Anne Young, Amy Herlihy, Gillian Mitchell, David M Thomas, Mandy Ballinger, Kathy Tucker, Craig R Lewis, Susan Neuhaus, International Sarcoma Kindred Study and Jane Hallida

    Dynamical modelling of the elliptical galaxy NGC 2974

    Full text link
    In this paper we analyse the relations between a previously described oblate Jaffe model for an ellipsoidal galaxy and the observed quantities for NGC 2974, and obtain the length and velocity scales for a relevant elliptical galaxy model. We then derive the finite total mass of the model from these scales, and finally find a good fit of an isotropic oblate Jaffe model by using the Gauss-Hermite fit parameters and the observed ellipticity of the galaxy NGC 2974. The model is also used to predict the total luminous mass of NGC 2974, assuming that the influence of dark matter in this galaxy on the image, ellipticity and Gauss-Hermite fit parameters of this galaxy is negligible within the central region, of radius 0.5Re.0.5R_{\rm e}.Comment: 7 figure

    Influence of V5/6-His Tag on the Properties of Gap Junction Channels Composed of Connexin43, Connexin40 or Connexin45

    Get PDF
    HeLa cells expressing wild-type connexin43, connexin40 or connexin45 and connexins fused with a V5/6-His tag to the carboxyl terminus (CT) domain (Cx43-tag, Cx40-tag, Cx45-tag) were used to study connexin expression and the electrical properties of gap junction channels. Immunoblots and immunolabeling indicated that tagged connexins are synthesized and targeted to gap junctions in a similar manner to their wild-type counterparts. Voltage-clamp experiments on cell pairs revealed that tagged connexins form functional channels. Comparison of multichannel and single-channel conductances indicates that tagging reduces the number of operational channels, implying interference with hemichannel trafficking, docking and/or channel opening. Tagging provoked connexin-specific effects on multichannel and single-channel properties. The Cx43-tag was most affected and the Cx45-tag, least. The modifications included (1) Vj-sensitive gating of Ij (Vj, gap junction voltage; Ij, gap junction current), (2) contribution and (3) kinetics of Ij deactivation and (4) single-channel conductance. The first three reflect alterations of fast Vj gating. Hence, they may be caused by structural and/or electrical changes on the CT that interact with domains of the amino terminus and cytoplasmic loop. The fourth reflects alterations of the ion-conducting pathway. Conceivably, mutations at sites remote from the channel pore, e.g., 6-His-tagged CT, affect protein conformation and thus modify channel properties indirectly. Hence, V5/6-His tagging of connexins is a useful tool for expression studies in vivo. However, it should not be ignored that it introduces connexin-dependent changes in both expression level and electrophysiological properties

    Early to middle Eocene history of the Arctic Ocean from Nd-Sr isotopes in fossil fish debris, Lomonosov Ridge

    Get PDF
    Strontium and neodymium radiogenic isotope ratios in early to middle Eocene fossil fish debris (ichthyoliths) from Lomonosov Ridge (Integrated Ocean Drilling Program Expedition 302) help constrain water mass compositions in the Eocene Arctic Ocean between ∼55 and ∼45 Ma. The inferred paleodepositional setting was a shallow, offshore marine to marginal marine environment with limited connections to surrounding ocean basins. The new data demonstrate that sources of Nd and Sr in fish debris were distinct from each other, consistent with a salinity-stratified water column above Lomonosov Ridge in the Eocene. The 87Sr/86Sr values of ichthyoliths (0.7079–0.7087) are more radiogenic than Eocene seawater, requiring brackish to fresh water conditions in the environment where fish metabolized Sr. The 87Sr/86Sr variations probably record changes in the overall balance of river Sr flux to the Eocene Arctic Ocean between ∼55 and ∼45 Ma and are used here to reconstruct surface water salinity values. The ɛNd values of ichthyoliths vary between −5.7 and −7.8, compatible with periodic (or intermittent) supply of Nd to Eocene Arctic intermediate water (AIW) from adjacent seas. Although the Norwegian-Greenland Sea and North Atlantic Ocean were the most likely sources of Eocene AIW Nd, input from the Tethys Sea (via the Turgay Strait in early Eocene time) and the North Pacific Ocean (via a proto-Bering Strait) also contributed
    corecore